Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Biomedicines ; 10(6):1231, 2022.
Article in English | MDPI | ID: covidwho-1857623

ABSTRACT

Background. The impact of the COVID-19 pandemic on hospitalization for cardiac infections is not well known. We aimed to evaluate the nationwide trends in hospital stays for myocarditis and endocarditis cases before, during and after the nationwide lockdown for the COVID-19 pandemic in France. We then aimed to describe the proportion of myocarditis and endocarditis patients with and without COVID-19 and their clinical characteristics. Methods. Hospitalized cases of cardiac infection were extracted from the French National Discharge database, which collects the medical records of all patients discharged from all public and private hospitals in France. Age, sex, and available cardiovascular risk factors were compared between stays with and without COVID-19 during the lockdown. Results. The number of myocarditis cases was 11% higher in 2020, compared to the average of the three prior years. In 2020, 439 of 3727 cases of myocarditis were associated with COVID-19. For endocarditis, there was an increase in cases by 7% in 2020 versus prior years. For endocarditis, 3% (240 of 8128 cases) of patients with endocarditis had COVID-19. For myocarditis, older age, hypertension, diabetes, obesity, and atrial fibrillation were more frequent in patients with COVID-19 than in those without. For endocarditis, only hypertension was more frequent in patients with COVID-19 than in those without. Conclusion. Our study reports an increase in hospitalizations for both myocarditis and endocarditis in 2020, possibly related to the COVID-19 pandemic. Interestingly, the trends differ according to the COVID-19 status. Knowledge of the factors associating myocarditis or endocarditis and COVID-19 may improve the quality and the type of monitoring for people with COVID-19, the identification of patients at risk of cardiac infections, and the treatment of COVID-19 patients.

2.
Boris Bonaventure; Antoine Rebendenne; Francisco Garcia de Gracia; Marine Tauziet; Joe McKellar; Ana Luiza Chaves Valadão; Valérie Courgnaud; Eric Bernard; Laurence Briant; Nathalie Gros; Wassila Djilli; Mary Arnaud-Arnould; Hugues Parrinello; Stéphanie Rialle; Olivier Moncorgé; Caroline Goujon; Ronit Rosenfeld; Ron Alcalay; Eran Zahavy; Haim Levy; Itai Glinert; Amir Ben-Shmuel; Tomer Israely; Sharon Melamed; Boaz Politi; Hagit Achdout; Shmuel Yitzhaky; Chanoch Kronman; Tamar Sabo; Alina Renz; Muhammad Naveez; Zsolt Bocskei; Daniela Bornigen; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; John A Bachman; Benjamin M Gyori; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.28.359356

ABSTRACT

Genome-wide CRISPR/Cas9 knock-out genetic screens are powerful approaches to unravel new regulators of viral infections. With the aim of identifying new cellular inhibitors of HIV-1, we have developed a strategy in which we took advantage of the ability of type 1 interferon (IFN) to potently inhibit HIV-1 infection, in order to create a cellular environment hostile to viral replication. This approach led to the identification of the DEAD-box RNA helicase DDX42 as an intrinsic inhibitor of HIV-1. Depletion of endogenous DDX42 using siRNA or CRISPR/Cas9 knock-out increased HIV-1 infection, both in model cell lines and in physiological targets of HIV-1, primary CD4+ T cells and monocyte-derived macrophages (MDMs), and irrespectively of the IFN treatment. Similarly, the overexpression of a dominant-negative mutant of DDX42 positively impacted HIV-1 infection, whereas wild-type DDX42 overexpression potently inhibited HIV-1 infection. The positive impact of endogenous DDX42 depletion on HIV-1 infection was directly correlated to an increase in viral DNA accumulation. Interestingly, proximity ligation assays showed that DDX42, which can be mainly found in the nucleus but is also present in the cytoplasm, was in the close vicinity of HIV-1 Capsid during infection of primary monocyte-derived macrophages. Moreover, we show that DDX42 is also able to substantially decrease infection with other retroviruses and retrotransposition of long interspersed elements-1 (LINE-1). Finally, we reveal that DDX42 potently inhibits other pathogenic viruses, including Chikungunya virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
HIV Infections , Chikungunya Fever , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL